


Hypergeometric Series

Experiment.
@ There are R red balls and B blue balls in an urn at time t =0

@ At any time, we sample a random ball from the urn (and we
do not replace the ball back into the urn)

@ We are interested in understanding the behavior of the random
variable S, that counts the total number of red balls at the
end of time t = n (that is, n balls are sampled without
replacement from the urn)

@ We assume that R 4+ B > n, i.e., the bin never runs out of
balls in our experiment

Azuma's Inequality



Formalization of the Problem |

@ The variables (X, ...,X,) represent the balls we sample at
time 1,...,n, respectively

@ We are interest in understanding the concentration of the
random variable

Sn = Z I{X,-:R}
i=1

Note that the probability of X; = R depends on the sum S;_;

@ Let us first calculate the expected value of this random value.
Prove by mathematical induction that the following result is
true for n > 0.

E[Ss)=n

R+ B

Azuma's Inequality



Formalization of the Problem Il

In this lecture, all results will be mentioned. No proofs shall be
provided. Students are encouraged to prove these results on
their own.

@ Now, we shall prove a concentration bound around this
expected value

Azuma's Inequality



The Filtration and the Martingale |

o Let
{0,Q =FoC FLC--CFp

represent the natural ball-exposure filtration for this problem.

@ This statement, in short, states that Q = {R, B}" and, for any
x €Qand 0 <7< n, we have

Fi(x) = {x1x2...x;} x {R, B}"*i

That is, Fj(x) is the set of all y € Q such that x; =y, ...,
Xi = Yi

Azuma's Inequality



The Filtration and the Martingale |l

@ Now, we need to define the random functions Fy, ... ,[F, that
are Q — R.
Fi(x) :=E [S,,]]:,-] (x)

Let us parse this statement. Recall that F;(x) denotes the set
of all y € Q that agree at the first / entries with x, i.e., the
subset {x1x2...x;} x {R, B}"~". Now, [F;(x) represents the
conditional expectation of S, restricted to x in the subset
Fi(x).

@ Observe that Fo = E[S;], i.e., the expected value of S, in this
experiment. We have already computed this quantity
previously, i.e., we have Fg = ”WRB'

@ Observe that F; is F;-measurable, for 0 <7 < n

@ Now, we need to prove that the martingale property holds.
That is, we need to prove (the functional identity)
E [Fit1|Fi] = (Fi|Fi), forall 0 < i< n

Azuma's Inequality



The Filtration and the Martingale Il

e Note that (FFp,...,F,) is Doob’'s martingale for the function
Sp. So, it is a martingale. Nevertheless, let us prove that
(Fo,...,[F,) is a martingale with respect to the ball-exposure
filtration (Fo,...,Fn) using elementary techniques. Towards
this, we need to compute the following quantity

(Fi|Fi)(x) =7

Prove the following result.

Let 0 < i < n. Let Sj(x) represent the number of red balls in the
first i samples of x € {R, B}". Then, we have

R — S,’(X)

(FilFi)(x) = 8i(x) + (n = 1) g

Azuma's Inequality



The Filtration and the Martingale IV

Intuitively, we have seen S;(x) until time t = i. In the future,

we expect to see (n — i)f;jrsé(fi) red balls (there are R — S;(x)

red balls left in the urn among R + B — i balls).
At time time t = j + 1, the probability that we see a red ball is

p= ’E;SE;(_X,?. So, we have
. R — S,‘ x)—1
E [Fit1|Fi] (x) = p (S;(x) F14+(n—i- 1)R+B(_)i_1)

(1-p) (S;(X) +(n—i— 1)/m>

We need to prove that the RHS is equal to
Si(x)+ (n—1) ';jrgé(_xi). This step is left as an exercise. (Think:

You have already proved this result earlier!)

Azuma's Inequality



The Filtration and the Martingale V

@ Let us calculate the value of ¢;y1, for 0 < i < n.

= max Fipi(y) — min Fipi(y)

yeFi(x) yeFi(x)
R — S,‘(X) - 1)

:(&@%+L+@_i_1hp+3—i—l

<&u)+wf”RiE§f?1>
n—i—1

CR+B-i—1
<l=:ci1

Azuma's Inequality



The Filtration and the Martingale VI

@ By Azuma's inequality, we have
n
P[F,—Fo > E] <exp | —2E%/> ¢
i=1

This inequality is equivalent to

R

PlEn—npTg

Azuma's Inequality



